Combined effect of the use of carbon fiber and seawater and the molecular structure on the tribological behavior of polymer materials

نویسندگان

  • Zhiqiang WANG
  • Jing NI
  • Dianrong GAO
چکیده

The combined effect of the use of carbon fiber and seawater and the molecular structure on the tribological behavior of various polymer materials under natural seawater lubrication was investigated. After the investigation, the wear morphology of the contact surface was observed by a laser scanning confocal microscope, and the texture of the wear scars and tracks were presented in 3D profiles. Moreover, the mechanism of mixed lubrication and wear resistance was analyzed. The results demonstrated that the friction coefficient of carbon fiber-reinforced polyetheretherketone (CFRPEEK) is the lowest and fluctuates at approximately 0.11. Moreover, the seven polymer materials in ascending order of friction coefficients are CFRPEEK, carbon fiber-reinforced polyamide-imide, polytetrafluoroethylene, polyoxymethylene, polyetheretherketone (PEEK), acrylonitrile butadiene styrene resin, and glass fiber–epoxy resin. More critically, the simultaneous incorporation of deposition, polymeric scrap, hydrophilic groups, and seawater resulted in a decrease in the friction and wear of polymer materials under seawater lubrication. This observation implies that a synergistic friction-reducing and wear-resistant effect exists between carbon fiber, seawater, and the molecular structure of PEEK. As a result, a highly effective polymer material was discovered, CFRPEEK, which has the lowest friction coefficient of 0.11 and lowest wear rate of 2 × 10–5 mm3·(N·m)−1 among the polymer materials; this validates the selection of dual friction pairs for seawater hydraulic components.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of Mechanical and Tribological Properties of Glass/Carbon Fiber Reinforced Polymer Hybrid Composite

Polymer matrix composites used in different industrial applications due to their enhanced mechanical properties and lightweight. However, these materials are subjected to friction and wear situations in some industrial and automobile applications. Therefore, there is a need to investigate the wear properties of polymer matrix composite materials. This article emphasizes the dry abrasive wear be...

متن کامل

Buckling Behavior of Semi-scale Steel Tank with Carbon Fiber Reinforced Polymer Ring Subjected to Lateral Uniform Pressure Loading

Research on increasing the buckling strength of tanks carrying fluid and also cylindrical shells of thin-walled steel in civil engineering and mechanics is important. This is due to the widespread use of these structures in the industry. Due to the low thickness of the body and also due to the pressure forces entering these tanks, these structures are exposed to lateral buckling. In this resear...

متن کامل

Behavior of Coupling Beams Strengthened with Carbon Fiber Reinforced Polymer Sheets

In this research, using the results of 6 tests, the effect of Carbon Fiber Reinforced Polymer (CFRP) sheets on the behavior of reinforced concrete coupling beams of shear walls is studied. First, in the experimental part of the study, four coupling beams with different reinforcements were manufactured and tested. Then, after the failure of the specimens, two of them were rehabilitated and stren...

متن کامل

The Effect of Simultaneous Incorporation of PTFE Nanoparticles and Carbon Nanotubes on the Tribological Behavior of Ni-P Coating

In some engineering fields, wear resistance and a low friction coefficient are required at the sametime. In this research, PTFE nanoparticles and carbon nanotubes were co-deposited within Ni-Pmatrix to obtain an Ni-P-PTFE-CNT hybrid coating for wear resistance and a low friction coefficient.The tribological properties of the deposits were evaluated by pin on disc tribometer. T...

متن کامل

Effect of surface treatments on damping behavior of carbon and glass fiber reinforced friction material

The ability to absorb vibrations in a vehicle during braking conditions depends primarily on the selection of ingredients for a friction material and interfacial adhesion between all these ingredients.  In this work, a hybrid brake friction material is developed by combination of carbon fiber (CF), glass fiber (GF), resin and other ingredients. The surfaces of carbon and glass fibers are c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017